Dynamic feeder dyke systems in basaltic volcanoes: the exceptional example of the 1809 Etna eruption (Italy)

نویسندگان

  • Nobuo Geshi
  • Marco Neri
چکیده

*Correspondence: Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Osservatorio Etneo, Piazza Roma, 2, 95123 Catania, Italy e-mail: [email protected] The detection and understanding of the movement of magma at very shallow levels remains one of the most fascinating challenges of modern volcanology, because such information allows us to identify and circumscribe the most probable location where future eruptive vents will open. Unfortunately, it is rarely possible to observe any detail of the internal structure of the feeder system of recent eruptions; in only very few cases, geological observations in dissected volcanoes can help us imagine how magma moved and evolved inside the feeder system. In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical and rare case in which it is possible to closely observe the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analyzed well–exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose a dynamic model of the magma behavior inside a laterally–propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. This is therefore an exceptional case to understand how basaltic magmas move during the propagation of an eruptive fissure, which furnishes fundamental elements for the modeling of superficial intrusive processes. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth of origin of magma in eruptions

Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness r...

متن کامل

Basaltic explosive volcanism: Constraints from deposits and models

Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (!10–10 kg s) to Plinian eruptions of moderate intensity (10–10 kg s). Recent well-documented historical eruptions from Etna, Kı̄lauea and Stromboli typify this diversity. Etna is Europe’s largest and most voluminously productive volcano with an extraordinary level and diversit...

متن کامل

Stronger or longer: Discriminating between Hawaiian and Strombolian eruption styles

The weakest explosive volcanic eruptions globally, Strombolian explosions and Hawaiian fountaining, are also the most common. Yet, despite over a hundred years of observations, no classifications have offered a convincing, quantitative way of demarcating these two styles. New observations show that the two styles are distinct in their eruptive time scale, with the duration of Hawaiian fountaini...

متن کامل

How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes

To assess the probability of a volcanic eruption during an unrest period, we must understand magma-chamber rupture and dyke propagation to the surface, as well as dyke arrest at depth in the volcano. Dyke propagation and arrest depend strongly on the local stresses in the individual mechanical layers which constitute the volcano. The local stresses are primarily determined by the loading condit...

متن کامل

Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data

Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) is an efficient technique for capturing short, subtle episodes of conduit pressurization in open vent volcanoes like Stromboli (Italy), because it can detect very shallow magma storage, which is difficult to identify using other methods. This technique allows the user to choose the optimal radar location for measuring the most sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014